
AI playing Snake Game with Deep Q-Learning

Selected Topics in Artificial Intelligence 2021. Professor: Velarde, Gissel 

Ayllón Durán, Mauricio  
UPB 

La Paz, Bolivia 
mauricio.ad1707@gmail.com

 
López Rojas, Jorge Ignacio 

UPB 
La Paz, Bolivia 

georgeilr99@gmail.com 

 
Vejarano Torres, Mauricio 

UPB 
Santa Cruz, Bolivia 

maveto13@gmail.com

 
Pomier Salas, Kevin Mauricio 

UPB 
La Paz, Bolivia. 

kevinpomier.kp@gmail.com 

Abstract — In this project, we explore the application of
Reinforcement Learning to the game Snake. We use Deep Q
Learning implementing a Neural Network to help the agent
(the snake) to learn what action should take given a state of the
game. The proposed model takes a state of the game,
represented by an array with 11 values, as an input for a feed
forward neural network and it gives as an output 3 values,
each one representing one of the three possible actions the
agent can take (turn right, turn left, keep straight). At last, we
measure the results by comparing the top scores and the mean
score of the Artificial Intelligence (AI) with our own scores to
determine if it can do better than the average human.

Key Words—Deep Learning, Deep Q-Learning, Agent,
Environment.0

I. MODEL

Our implementation follows the model presented in [1]. The

model uses Reinforcement Learning to make the agent (the snake)
choose the best action to take depending on the state of the game to
maximize the rewards. To understand how the model works we
need to understand the 4 main concepts and how they are
implemented (the state, the actions, the rewards, and the agent).

The state is the representation of the game that the agent can
perceive, it contains the essential information the agent needs to
process to know which action to take. Knowing how to implement
the state is important because if you put in a lot of information, the
agent will perform better but it will be slower, on the other hand, if
we give less information, the agent will process faster but its
performance will be worse. The implementation of the state in this
model is given by an array with 11 values that gives the agent the
information it needs to process and predict the best action. Each
value can be 0 or 1 and represents different things: danger straight,
danger right, danger left, direction left, direction right, direction
up, direction down, food left, food right, food up and food down.

The actions are moves that the agent can make given a certain
state. In this model the agent can make only 3 moves: turn right,
turn left, and keep straight. These actions can be represented by an
array of 3 values from 0 to 1. Each value represents the probability
of each action to be the best option.

The reward is a value that tells the agent how well it is doing.
You can sum some value to the reward if the agent does something
good and sum a negative value if the agent does something bad.
For this model the rewards are simple: it gains 10 points if it eats
the food, loses 10 if it dies or if it takes more than 5 seconds for the
agent to reach the food, the last punishment is in order to avoid
bucles.

The agent is the AI that processes the state and gives an action,
then it claims the rewards and learns how to improve for the next

game. The way it learns is by implementing Deep Q Learning. For
this model we use a Feed Forward Neural Network that takes as
input the state and outputs the Q values of each action. The
structure of the neural network consists of 3 layers: the input layer
that takes the 11 values ​​ of the state, 1 hidden layer with 256
neurons and Relu activation function, and the output layer of 3
values, each one corresponding to the Q-value of each action. The
algorithm of Deep Q Learning starts processing a state, which will
return the Q values of all actions, then the agent will select the
action with max Q value (or a random action depending on the
epsilon-greedy policy), perform the action and receive the reward,
calculate the loss function, and last use back propagation to
minimize the loss [2]:

￼

II. EXPERIMENTS

We performed separate experiments. First, each participant

played the snake game in the best way they could. It became an
essential part of the project since its results will later be very
useful, becoming a baseline for the project and to make a
comparison of Human vs AI.

Likewise, the second part of the experiments was carried out
only by the AI ​​where it learns to play. It should be noted that the AI ​​
at the beginning has no idea how to play and through random
movements it performs an exploration. As the game progresses, it
exploits the known, thus generating a game strategy. Specifically,
we let the AI ​​carry out a training (Exploration-exploitation) of 200
games. The same model was trained with different optimizers
(Adam, SGD and Adamax) to compare their performance and
choose the best model to compare with the human results.

III. RESULTS

To assess the results of the models and compare them, we used

3 parameters, the high score to compare the best game from each
model, the mean score to compare the general performance of each
model, and the standard deviation to see the distribution of the
scores each model achieved. The mean score is computed as:

￼

For the second part of the experiments, we only compare the
model with Adam Optimizer, which was the best optimizer, with
the human results, only using 2 parameters, the high score and the
mean score as seen in Table 1.

Mea n Scor e =
Tota lScor e

Nu m ber O f G a m es

Table 1 - Model results for different optimizers

￼

Figure 1 – Results of Model with Optimizer Adam in 200 games

￼

Figure 2 – Results of model with Optimizer SGD in 200 games

Table 2 - Results that each player got when playing vs Best Model

IV. CONCLUSIONS

In this project, we have shown an implementation of Q-learning
together with the change of different parameters. Anticipating that
the difference between the performances of the model could
become more stable after a long period of training, and the result
did not verify our expectation. Furthermore, we compare this
method with human players. While none of the models could
achieve the perfect game, it was found that after a certain number
of games the best model could learn how to play like a human
would do, developing its own strategy. We observed that agent
seems not to be aware of its body, only its head. Therefore, the
algorithm could be improved to achieve a higher score by
improving its state representation. This is worth exploring for
future work.

V. REFERENCES

[1] Teach AI To Play Snake - Reinforcement Learning
Tutorial With PyTorch And Pygame (Part 1). (2020,
December 20). [Video]. YouTube. https://
www.youtube.com/watch?
v=PJl4iabBEz0&list=PLqnslRFeH2UrDh7vUmJ60YrmWd
64mTTKV&index=1&t=670s

[2] Deep Q-learning: An introduction to deep reinforcement
learning. Analytics Vidhya. (2020, April 27). Retrieved
October 25, 2021, from https://www.analyticsvidhya.com/
blog/2019/04/introduction-deep-q-learning-python/.

	 IX. CONTRIBUTION

Jorge Lopez contributed to the construction of neural
networks

Mauricio Ayllon: contributed to the data collection and
construction of graphics when analyzing the game

Mauricio Vejarano: contributed to the training of the
machine, executing it in the game snake.

Kevin Pomier: contributed to the data collection to be able
to train the machine

Model Highest
Score

Mean
Score

Standard
deviation

Number
of Games

Optimizer
Adam

56 16.14 12.804 200

Optimizer
SGD

7 0.63 0.518 200

Optimizer
Adamax

17 0.62 0.58 200

Player Highest
Score

Mean
Score

Standard
deviation

Number
of Games

Model –
Adam

optimizer

56 16.14 12.804 200

Jorge
López

35 5.05 3.76 20

Mauricio
Ayllón

50 9.7 7.68 20

Mauricio
Vejarano

61 12.95 9.89 20

Kevin
Pomier

45 6 5.50 20

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/

